Wednesday 25 May 2016

Invention: The Bionic Skin That Can Detect Any Tumor - Hiding Inside A Woman's Breast. - Simply By Feeling It.

The future of healthcare is Here and it is beautiful.

Someya is striving for a future where doctors wearing a bespoke glove made from his technology could detect a tiny tumor hiding inside a woman's breast, simply by feeling it. This would reduce the need for referrals and scans and could potentially detect tumors earlier -- during routine checks.
The possibilities are vast.

These wearable e-skins, either tattooed onto our bodies or sewn into our clothes, could also be used to monitor our vital signs and even help medics predict future heart attacks, by monitoring our heart signals. Someya plans to make this happen within the next few years.
However, this vision of his began with robots -- not humans.


"I imagined this futuristic scene where a robot shaking hands with someone could detect their emotion -- like passion, or sorrow." Creating e-skins for robots, he thought, would be a new research trend outside the saturated area of more commercial electronics, which at the time either focused on miniaturization or making machines faster.

That was 15 years ago.

Today that vision seems far less futuristic when compared to the technology he has since pioneered.
Getting under his skin

"In the early 2000s, when I started out, flexible electronics were getting popular, but most people were trying to develop e-paper," says the professor of electrical engineering. "I wanted to do something outside the mainstream."

Artificial skins already existed, but they weren't very good. The ones capable of detecting temperature and pressure were not flexible and were instead only rigid electronic materials that had some level of function. They were also too expensive to be manufactured in large enough quantities to cover a robot.

Someya wanted to tackle all of these limitations, but it wouldn't be easy.

The human touch

Human skin is marvelously complicated -- it is not an easy thing to mimic.
When "unwrapped," the average adult contains roughly twenty square feet of skin, with a mind-boggling two million pain receptors.

Someya knew that wiring two million sensors into a circuit driver would kill the flexibility of any e-skin.

In 2003, he began swapping rigid electronic materials -- such as silicon -- with flexible, organic materials such as dinaphtho thieno thiophene (DNTT), a material often used on the security foil strips found on banknotes.

Firstly, he opted to connect sensors, with the ability to detect pressure and temperatures between 30 degrees C to 80 degrees C (86 degrees F to 176 degrees F), with organic semi-conductors that were naturally soft and biocompatible -- the ideal material for e-skin.

He then laid these materials on the type of "active matrix" grid system traditionally used in LCD displays, enabling each sensor to have an address it could be located at on the grid. This would avoid the need for tangles of wires.

Click link to read full article

No comments:

Post a Comment